
CS 4530: Fundamentals of Software Engineering

Module 06: Concurrency Patterns in Typescript

Adeel Bhutta, Joydeep Mitra and Mitch Wand
Khoury College of Computer Sciences

1

© 2023,-2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


Learning Goals for this Lesson
• At the end of this lesson, you should be 

prepared to:
• Explain the difference between JS run-to-

completion semantics and interrupt-based 
semantics.

• Given a simple program using async/await, 
work out the order in which the statements 
in the program will run.

• Write simple programs that create and 
manage promises using async/await

• Write simple programs to mask latency with 
concurrency by using non-blocking IO and 
Promise.all in TypeScript.

2



Your app probably spends most of its time 
waiting
• Consider: a 1Ghz CPU executes 

an instruction every 1 ns

• Almost anything else takes 
approximately forever

• Want to utilize this “wasted” 
time by doing something else

• Processing data
• Communicating with remote hosts
• Timers that countdown while our app is 

running
• Echoing user input

3

CPU 1

thread0() Main 
Memory

CPU 1 Cache
100ns7ns SSD

150,000ns (just to read 4KB)

Magnetic HD

10,000,000ns (just to seek!)

Remote Computer 
(Internet in between)

~100,000,000ns
Earth to moon: ~16,000,000 inches



4

We achieve this goal using two 
techniques:

1. cooperative multiprocessing 

2. non-blocking IO



Most OS's use pre-emptive multiprocessing
• OS manages multiprocessing with multiple threads of 

execution
• Processes may be interrupted at unpredictable times
• Inter-process communication by shared memory
• Data races abound
• Really, really hard to get right: need critical sections, 

semaphores, monitors (all that stuff you learned about in 
op. sys.)



Javascript/Typescript uses cooperative 
multiprocessing
• In cooperative multiprocessing, only one process is 

executed at a time.
• Each process pauses when it is convenient to allow 

other processes to make progress.
• To make this practical (and avoid cheating!), we 

need a programming model that encourages this 
behavior



async/await: a programming model for 
cooperative multiprocessing
• In async/await, the program is organized into a 

set of "async functions".
• An async function is like an ordinary function, 

except that it will pause at well-defined points 
in its execution. We will show you those with an 
example.

• When one program pauses, the runtime can 
choose to resume executing any process that is 
ready to run. 

7



A typical async function

8

async function someFunction(i: number) {
const j = i + 1;
// ... 
const k = await someOtherAsyncFunction(j);
// ...
const m = k + 100
return m;

}



An async function can only pause in two 
places

9

async function someFunction(i: number) {
const j = i + 1;
// ... 
const k = await someOtherAsyncFunction(j);
// ...
const m = k + 100
return m;

}

It will never 
pause in here

Or in here



What happens at those pause points?

10

async function someFunction(i: number) {
const j = i + 1;
// ... 
const k = await someOtherAsyncFunction(j);
// ...
const m = k + 100
return m;

}
Pause points



Java vs. JS/TS

11

async function asyncPrintA() {
await waitRandom(1); 
console.log('A');

}

async function asyncPrintBC() {
await waitRandom(2); 
console.log('B');
console.log('C');

}

async function run() {
await Promise.all([asyncPrintA(), asyncPrintBC()])

}

src/slides/dataRace2.ts

• In Java, you could get an 
interrupt between the 
print B and the print C.

• So the output could be 
ABC, BAC, BCA

• In TS/JS, the print B and 
print C are in the same 
critical section, so BAC is 
impossible!



Terminology: promises and run-to-
completion
• Each uninterruptible unit of work is called a 

"promise"
• The pattern we've just talked about is called 

"run-to-completion" semantics, because a pause 
point corresponds exactly to the end of one of 
these units of work

• You can do lots of different things with 
promises.

• Let's look some typical patterns.

12



Example:

13

// fakeRequest(n) is an async that waits for 1 second and then 
// resolves with the number n+10
import { fakeRequest } from "./fakeRequest";
import { timeIt } from "./timeIt";

async function main() {
console.log('main started');
const request = 32
const res = await fakeRequest(request);
console.log(`fakeRequest(${request}) returned: ${res}`);
console.log('main done');

}

timeIt(main)

src/Slides/oneRequest.ts

$ npx ts-node oneRequest.ts
main started
fakeRequest received request: 32
time passes....
fakeRequest(32) returned: 42
main done
1015.98 msec



Pattern for starting a concurrent 
computation using non-blocking I/O

1. The first console.log is printed
2. The http request is sent, using non-blocking i/o
3. The browser goes about its business
4. Eventually, the axios.get returns.
5. Some time after that, the console.log is printed and the makeRequest

concludes.
6. Any promises that are waiting for the result of this makeRequest become 

eligible for execution.

14

export async function makeRequest(requestNumber:number) {
console.log(`starting makeRequest(${requestNumber})`);
const response = await axios.get('https://rest-example.covey.town');
console.log('request:', requestNumber, '\nresponse:', response.data);

}

src/Slides/makeOneRequests.ts



Use Promise.all to execute several requests 
concurrently

15

async function main() {
console.log('starting main');
const promises = [fakeRequest(1), 

fakeRequest(2), 
fakeRequest(3)];

const results = await Promise.all(promises);
console.log('results:', results);
console.log('main done');

}

timeIt(main)

$ npx ts-node 
threeRequestsConcurrently.ts
starting main
fakeRequest received request: 1
time passes....
fakeRequest received request: 2
time passes....
fakeRequest received request: 3
time passes....
results: [ 11, 12, 13 ]
main done
1018.81 msec

src/Slides/threeRequestsConcurrently.ts



import axios from 'axios';

export async function makeRequest(requestNumber:number) {
console.log(`starting makeRequest(${requestNumber})`);
const response = await axios.get('https://rest-example.covey.town');
console.log(`request:${requestNumber} returned`);

}

function make3ConcurrentRequests() {
console.log('starting make3ConcurrentRequests');
makeRequest(100);
makeRequest(200);
makeRequest(300);
console.log('make3ConcurrentRequests finished');

}

make3ConcurrentRequests()

Running 3 concurrent get requests

16

$ npx ts-node makeThreeConcurrentRequests.ts
starting make3ConcurrentRequests
starting makeRequest(100)
starting makeRequest(200)
starting makeRequest(300)
make3ConcurrentRequests finished
request 300 returned
request 100 returned
request 200 returned

src/Slides/makeThreeConcurrentRequests.ts



If you add awaits, the requests will be 
processed sequentially

17

async function main() {
console.log('starting main');
const res1 = await fakeRequest(1);
console.log(`fakeRequest(1) returned: ${res1}`);
const res2 = await fakeRequest(2);
console.log(`fakeRequest(2) returned: ${res2}`); 
const res3 = await fakeRequest(2);
console.log(`fakeRequest(2) returned: ${res3}`);
console.log('main done');

}

timeIt(main)

src/Slides/threeRequestsSequentially.ts

$ npx ts-node 
threeRequestsSequentially.ts 
starting main
fakeRequest received request: 1
time passes....
fakeRequest(1) returned: 11
fakeRequest received request: 2
time passes....
fakeRequest(2) returned: 12
fakeRequest received request: 3
time passes....
fakeRequest(3) returned: 13
main done
3024.03 msec



…but it would be much slower

18

$ tsx timeComparison.ts
After 100 runs of length 10 with delay 100ms
makeRequestsConcurrently: min = 107  avg = 109 max = 115 msec
makeRequestsSerially : min = 1085  avg = 1093 max = 1103 msec



Why is that? 
Visualizing Promise.all

19

send receivewait

send receivewait

send receivewait

send receivewait send receivewait send receivewait

Sequential (await)

Concurrent (Promise.all)

“Don’t make another request 
until you got the last response 

back”

“Make all of the requests now, 
then wait for all of the 

responses”

237 msec

34 msec

send receivewait

send receivewait

send receivewait
or



Requests can also be chained (if they are 
serial)

20

async function main() {
console.log('main started');
const request1 = 32
const res1 = await fakeRequest(request1);
console.log(`fakeRequest(${request1}) returned: ${res1}`);
const res2 = await fakeRequest(res1);
console.log(`fakeRequest(${res1})returned: ${res2}`);
const res3 = await fakeRequest(res2);
console.log(`fakeRequest(${res2})returned: ${res3}`);
console.log([request1, res1, res2, res3]);
console.log('main done');

}

$ npx ts-node 
threeRequestsChained.ts
main started
fakeRequest received request: 32
time passes....
fakeRequest(32) returned: 42
fakeRequest received request: 42
time passes....
fakeRequest(42)returned: 52
fakeRequest received request: 52
time passes....
fakeRequest(52)returned: 62
[ 32, 42, 52, 62 ]
main done
3080.99 msec

src/Slides/threeRequestsChained.ts



Recover from errors with try/catch

21

// a request that may fail
async function maybeFailingRequest(req: number): Promise<number> {

const res = await fakeRequest(req);
if (res < 0) {

throw new Error(`Request ${req} failed because response ${res} < 0`);
} else {

return res;
}

}

src/Slides/tryCatchExample.ts



try/catch, continued

22

async function main() {
console.log('main started');
const req1 = -32
let res: number;
try {

res = await maybeFailingRequest(req1);
console.log(`fakeRequest(${req1}) returned: ${res}`);

} catch (err) {
console.error(`Error occurred for request ${req1}`);
res = 0

} 
console.log('main done with res =', res);

}

timeIt(main);

$ npx ts-node tryCatchExample.ts
main started
fakeRequest received request: -32
time passes....
Error occurred for request -32
main done with res = 0        
1007.52 msec



Pattern for testing an async function

23

test('fakeRequest should return its argument + 10', async () => {
expect.assertions(1)
await expect(fakeRequest(33)).resolves.toEqual(43)

})

// this will succeed, because it does not await the promise
test('bogus test', async () => {

// expect.assertions(1)
expect(fakeRequest(33)).resolves.toEqual(99)

})

src/Slides/jest-example.test.ts



AntiPattern 1: unawaited promise

24

// fakeRequest(n) is an async that waits for 1 second and then 
// resolves with the number n+10
import { fakeRequest } from "./fakeRequest";
import { timeIt } from "./timeIt";

async function main() {
console.log('main started');
const request = 32
const res = fakeRequest(request);
console.log(`fakeRequest(${request}) returned: ${res}`);
console.log('main done');

}

timeIt(main)

src/Slides/oneRequestNoAwait.ts

$ npx ts-node oneRequestNoAwait.ts
main started
fakeRequest(32) returned: [object Promise]
main done
2.64 msec
fakeRequest received request: 32
time passes....



What just happened?

25

$ npx ts-node oneRequestNoAwait.ts
main started
fakeRequest(32) returned: [object Promise]
main done
2.64 msec
fakeRequest received request: 32
time passes....

1. main() called fakeRequest(32).
2. fakeRequest(32) created a unit of work (a Promise), 

and told the runtime to run it sometime or other. 
3. Normally, we wouldn't see the actual value returned 

by fakeRequest(32), because we'd just wait for the 
unit of work to run before proceeding.

4. But here, we didn't wait-- we just took the value 
returned by fakeRequest(32)-- the Promise-- and 
printed it.  

5. We finished our current unit of work, printing "main 
done", which informed the runtime that we were done.

6. The runtime then looked around for another unit of 
work to do.  In this case, it found the unit of work 
created by fakeRequest(32), and ran it, printing the 
last two lines



Wow! That was complicated!
• We try to make our code easy to understand.
• That's why it's an antipattern.
• Luckily, in real code we don't need to do this 

very often

26

is complicated (which is why it's an antipattern).  Here's what happened:



AntiPattern 2: Side-effect before await

27

async function f() {
console.log('f started');
await g();
console.log('f done');

}

async function g() {
console.log('g started');
const res = await fakeRequest(32);
console.log(`fakeRequest(32) returned: 

${res}`);
}

Critical Section 
#1: no 
interruption 
between 'f 
started' and 'g 
started'

Critical Section 
#3

Critical Section 
#2

src/Slides/antiPattern2.ts



How does JS Engine make this happen?

28

• One Event Loop 
means that we have 
single thread of 
execution

• WebAPI are used for 
asynchronous tasks

• Queues are used for 
“await”-ing tasks

• When call stack gets 
empty, event loop 
picks up tasks from 
Callback Queue



29

We achieve this goal using two 
techniques:

1. cooperative multiprocessing 

2. non-blocking IO 

But where does the non-blocking IO come 
from?



Answer: JS/TS has some primitives for 
starting a non-blocking computation
• These are things like http requests, I/O operations, 

or timers.
• Each of these returns a promise that you can await.  

The promise runs while it is pending, and produces 
the response from the http request, or the contents 
of the file, etc.

• You will hardly ever call one of these primitives 
yourself; usually they are wrapped in a convenient 
procedure, e.g., we write

axios.get('https://rest-example.covey.town’)
to make an http request, or 

fs.readFile(filename)
to read the contents of a file.

30



Let’s put it all together

31

• JS/TS has single event loop
• We outsource most of the 

non-blocking IO work (to 
WebAPIs) for asynchronous 
work

• Upon completion, they are 
placed in queues (Microtask 
queue has priority over 
Macrotask queue)

• Event loop picks them up 
from queue when call stack 
is empty!



Here is a quick demo for you

32

Courtesy of https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif

https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif
https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif
https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif
https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif
https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif
https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif
https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif
https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif
https://dev.to/lydiahallie/javascript-visualized-event-loop-3dif


General Rules for Writing Asynchronous 
Code
• You can’t return a value from a promise to an ordinary 

procedure.
• You can only send the value to another promise that is 

awaiting it.
• Call async procedures only from other async functions or from 

the top level.
• Break up any long-running computation into async/await

segments so other processes will have a chance to run.
• Leverage concurrency when possible

• Use promise.all if you need to wait for multiple promises to 
return (or Promise.allSettled, if needed).

• Check for errors with try/catch



Odds and Ends You Should Know

34



Promises Enforce Ordering Through “Then”
• axios.get returns a 

promise.  

• p.then mutates that 
promise so that the then 
block is not run until after 
the original promise 
returns.

• The resulting promise 
isn’t completed until the 
then block finishes.

• You can chain .then’s, to 
get things that look like 
p.then().then().then()

• Each then is a pause 
point.

1. console.log('Making requests');
2. axios.get('https://rest-example.covey.town/')
  .then((response) =>{

  console.log('Heard back from server');
  console.log(response.data);

});
3. axios.get('https://www.google.com/')
  .then((response) =>{
    console.log('Heard back from Google');
  });
4. axios.get('https://www.facebook.com/')
  .then((response) =>{
    console.log('Heard back from Facebook');
  });
5. console.log('Requests sent!');



Async/await code is compiled into 
promise/then code

async function 
makeThreeSerialRequests(){
1.  console.log('Making first 
request’);
2.  await makeOneGetRequest();
3.  console.log('Making second 
request’);
4.  await makeOneGetRequest();
5.  console.log('Making third 
request’);
6.  await makeOneGetRequest();
7.  console.log('All done!');
}
makeThreeSerialRequests();

console.log('Making first request');
makeOneGetRequest().then( () =>{
console.log('Making second request');
return makeOneGetRequest();

}).then(() => {
console.log('Making third request');
return makeOneGetRequest();

}).then(()=>{
console.log('All done!');

});



But you can still have a data race

37

let x : number = 10

async function asyncDouble() {
// start an asynchronous computation and wait for the result
await makeOneGetRequest(1); 
x = x * 2 // statement 1

}

async function asyncIncrementTwice() {
// start an asynchronous computation and wait for the result
await makeOneGetRequest(2); 
x = x + 1; // statement 2
x = x + 1; // statement 3

}

async function run() {
await Promise.all([asyncDouble(), asyncIncrementTwice()])
console.log(x)

}

src/Slides/dataRace.ts



Review
• You should now be prepared to:

• Explain the difference between JS run-to-
completion semantics and interrupt-based 
semantics.

• Given a simple program using async/await, work 
out the order in which the statements in the 
program will run.

• Write simple programs that create and manage 
promises using async/await

• Write simple programs to mask latency with 
concurrency by using non-blocking IO and 
Promise.all in TypeScript.

38


	CS 4530: Fundamentals of Software Engineering��Module 06: Concurrency Patterns in Typescript
	Learning Goals for this Lesson
	Your app probably spends most of its time waiting
	We achieve this goal using two techniques:� �1. cooperative multiprocessing � �2. non-blocking IO
	Most OS's use pre-emptive multiprocessing
	Javascript/Typescript uses cooperative multiprocessing
	async/await: a programming model for cooperative multiprocessing
	A typical async function
	An async function can only pause in two places
	What happens at those pause points?
	Java vs. JS/TS
	Terminology: promises and run-to-completion
	Example:
	Pattern for starting a concurrent computation using non-blocking I/O
	Use Promise.all to execute several requests concurrently
	Running 3 concurrent get requests
	If you add awaits, the requests will be processed sequentially
	…but it would be much slower
	Why is that? �Visualizing Promise.all
	Requests can also be chained (if they are serial)
	Recover from errors with try/catch
	try/catch, continued
	Pattern for testing an async function
	AntiPattern 1: unawaited promise
	What just happened?
	Wow! That was complicated!
	AntiPattern 2: Side-effect before await
	How does JS Engine make this happen?
	We achieve this goal using two techniques:� �1. cooperative multiprocessing � �2. non-blocking IO 
	Answer: JS/TS has some primitives for starting a non-blocking computation
	Let’s put it all together
	Here is a quick demo for you
	General Rules for Writing Asynchronous Code
	Odds and Ends You Should Know
	Promises Enforce Ordering Through “Then”
	Async/await code is compiled into promise/then code
	But you can still have a data race
	Review

